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Simulating Biochemical Networks at the Particle Level and in Time and Space:
Green’s Function Reaction Dynamics
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We present a technique, called Green’s function reaction dynamics (GFRD), for particle-based
simulations of reaction-diffusion systems. GFRD uses a maximum time step such that only single
particles or pairs of particles have to be considered. For these particles, the Smoluchowski equations
are solved analytically using Green’s functions, which are used to set up an event-driven algorithm. We
apply the technique to a model of gene expression. Under biologically relevant conditions, GFRD is up to
5 orders of magnitude faster than conventional particle-based schemes.
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FIG. 1. Determination of the maximum time step, �tmax. The
maximum size of the time step is set by the requirement that
each particle can interact with at most one other particle during
that time step; it can thus travel a distance of at most �rmax;i

during a time step, as indicated by the circles. We have used the
operational criterion �rmax;i � H

����������������������
6Di�tmax;i

p
, with Di being

the diffusion constant of particle i. A value of H � 3 was found
to yield a good conservation of the spatial distribution of
particles. In this example, each particle is assumed to have the
same diffusion constant; the time step is limited by the con-
straint that particles i and k should not interact as particle i can
already interact with particle j. Note that with this maximum
time step the many-body problem of propagating the N particles
is reduced to that of propagating single particles and pairs of
particles.
In many networks of interacting components, the spatial
distribution of the reactants and the stochastic character of
their interactions is of crucial importance for the macro-
scopic behavior of the system. Examples are to be found in
biological evolution and population dynamics [1], but
arguably the best examples are biochemical networks
[1,2]. Biochemical networks are the computational devices
of living cells. They allow the living cell to detect, amplify,
and integrate signals, as well as transmit signals from one
place to another. Importantly, the concentrations of the
components are often low and, as a result, biochemical
networks can be highly stochastic. Indeed, an important
question is how the ability to resist noise constrains the
design of the network [3].

In principle, computer simulations are ideally suited for
elucidating the design principles that allow biochemical
networks to process information reliably in time and space.
However, the current techniques to study biochemical net-
works are of limited use. The commonly used reaction-
diffusion equations based upon the macroscopic chemical
rate equations ignore the discrete nature of the reactants
and the stochastic character of their interactions, while
techniques based upon the (zero-dimensional) chemical
master equation, such as the Gillespie algorithm [4], as-
sume that at each instant the particles are uniformly dis-
tributed in space. In order to take into account both the full
spatial distribution of the components and the stochastic
character of their interactions, it would seem natural to use
a technique based upon Brownian dynamics. However,
such a technique, while correct, would be highly ineffi-
cient, because the reactant concentrations are usually low
and, as a consequence, much CPU time would be wasted in
propagating the particles toward one another. We have
developed an event-driven algorithm, named Green’s func-
tion reaction dynamics (GFRD), which uses Green’s func-
tions to combine in one step the propagation of the
particles in space with the reactions between them.

Here, we apply GFRD to a model of gene expression.
The calculations reveal that the event-driven nature of
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GFRD makes it up to 5 orders of magnitude more efficient
than schemes based upon Brownian dynamics. The algo-
rithm is generic and not limited to biochemical networks.
GFRD can be applied to a wide variety of reaction-
diffusion problems, including those in population dynam-
ics, evolution, and condensed-matter physics.

Overview of the algorithm.—Figure 1 shows a typical
configuration of reactants. The particles move diffusively;
the circles indicate the maximum distance each particle
can travel in a time step. The essence of GFRD is to
determine a maximum time step, �tmax, such that only
single particles or pairs of particles have to be considered
3-1  2005 The American Physical Society



PRL 94, 128103 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
1 APRIL 2005
(see Fig. 1). For these cases, the Smoluchowski equation
[5,6] can be solved analytically using Green’s functions.
The analytical solutions can then be used to set up an
event-driven algorithm [7]. In contrast to the event-driven
schemes of [4,8], GFRD follows all the reactants in both
time and space.

Monomolecular reactions: the Green’s function for a
single particle.—We first consider a single, spherical
particle A that moves diffusively and can ‘‘decay’’ accord-
ing to

A!
kd B� C . . . : (1)

We assume that reaction (1) is a Poisson process and that if
a reaction event happens, it happens instantaneously. This
means that the reaction event can be decoupled from the
diffusive motion of the particle. If kddt is the probability
that a reaction event occurs in an infinitesimal time interval
dt, then the probability that the next reaction occurs be-
tween t and t� dt is given by

qd�tjt0�dt � kd exp��kd�t� t0�	dt: (2)

The diffusive motion of the particle is described by the
Einstein diffusion equation, the solution of which is given
by

p1�r; tjr0; t0� �
1

�4�D�t� t0�	
3=2

exp
�
�
jr� r0j2

4D�t� t0�

�
:

(3)

Here, D is the diffusion constant and p1�r; tjr0; t0� is the
probability that the particle is at position r at time t, given
that it was at r0 at time t0.

Bimolecular reactions: the Green’s function for a pair of
particles.—We next consider one pair of particles A and B
that can react according to

A� B!
ka C�D . . . : (4)

We assume that A and B are spherical and move by
diffusion with diffusion constantsDA andDB, respectively.
Furthermore, the particles react with an intrinsic rate
constant ka when they have approached each other within
the reaction distance � � �dA � dB�=2, where dA and dB
are the diameters of A and B. The particles could interact
via a potential U�r� that depends upon the interparticle
vector r, although here we restrict ourselves to U�r� � 0
for jrj>�.

The diffusive motion of such a pair of particles is
described by the Smoluchowski equation [5,6]. By mak-
ing the coordinate transformation R �

����������������
DB=DA

p
rA �����������������

DA=DB
p

rB and r � rB � rA, it can be shown that the
Smoluchowski equation describes two independent ran-
dom processes—free diffusion in the coordinate R and
diffusion (with a drift) in the coordinate r [9]. The former
process is described by
12810
pR
2 �R; tjR0; t0� �

exp�� jR�R0j
2

4�DA�DB��t�t0�
	

�4��DA �DB��t� t0�	3=2
: (5)

The Green’s function for the interparticle vector r,
pr
2�r; tjr0; t0�, takes into account the reaction between A

and B and is obtained via a radiation boundary condition
on the solution of the Smoluchoswki equation for the
interparticle vector r [9–11]. Two important quantities
can be derived from this Green’s function. The first is the
survival probability

Sa�tjr0; t0� �
Z
jrj>�

drpr
2�r; tjr0; t0�: (6)

The second quantity is the propensity function qa�tjr0; t0�,
which is the probability per unit time that the next reaction
of a pair of particles, initially separated by r0, occurs at
time t. It is related to Sa�tjr0; t0� via

qa�tjr0; t0� 
 �
@Sa�tjr0; t0�

@t
: (7)

Outline of the algorithm.—The GFRD algorithm con-
sists of iterating the following steps.

(i) Determine maximum time step �tmax. The maximum
possible time step is determined such that only single
particles or pairs of particles have to be considered (see
Fig. 1).

(ii) Determine next reaction and next reaction time.
For each reaction R�, we draw a tentative next reaction
time �t� � t� � t0 from the distribution q��t� t0� �
�@S��t� t0�=@t [see Eqs. (2) and (7) for the monomo-
lecular and bimolecular reactions, respectively]. The sys-
tem will then be propagated through a time �t as given by

�t � min�f�t�g;�tmax�: (8)

Note that if there is no reaction with �t� <�tmax, then no
reaction will occur within the time step.

(iii) Propagate particles. Single particles are propagated
according to p1�r; tjr0; t0� in Eq. (3); if a particle decays,
the products are placed next to each other at r. For each
pair of particles, the following two substeps are executed:
(1) a new position for the coordinate R is obtained from
Eq. (5); (2) if the pair has not reacted, a new interparticle
vector r is obtained from pr

2�r; tjr0; t0�; otherwise, if it has
reacted, the products are placed adjacent to each other at
positions around R.

(iv) Update particles. The identities of the particles are
updated according to the executed reaction.

During the simulations we use a two-dimensional look-
up table for qa�t� t0jr0� and a four-dimensional table for
the full solution of pr

2�r; t� t0jr0�; they are 1 Kb and
10 Mb, respectively. This procedure is more efficient
than that of [9], where pr

2�r; t� t0jr0� was constructed on
the fly.

The event-driven nature makes GFRD particularly use-
ful for networks in which the times between events are
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FIG. 2. The mean protein number NP as a function of the
protein production rate kprod as obtained from the GFRD simu-
lations for the reaction scheme shown in Eqs. (9)–(11). The solid
line denotes the mean-field prediction given by Eq. (12).
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distributed over a wide range of length and time scales, as,
e.g., in biochemical networks: GFRD takes small steps
when the particles are close to one another, while it takes
large jumps in time and space when the particles are far
apart from each other; this cannot be accomplished with
methods that use a fixed-time step [12]. Further, in GFRD
it never happens that more than two interaction partners are
within a reaction zone, in contrast to fixed-time step
schemes [12]. Most importantly, the event-driven nature
allows the simulation of arbitrary complex networks:
branching pathways—where a component can undergo a
number of competing reactions [see Eqs. (9) and (10)]—
can be handled, because only single and binary Green’s
functions of reactants are required to propagate the system
till the next event; in contrast, fixed-time step methods [12]
would here require intractable many-body Green’s func-
tions involving both reactants and products.

As a maximum time step is chosen such that the reac-
tions occur independently of each other, it can be shown
that GFRD yields the correct system dynamics [9]. More
complicated reactions, such as trimolecular reactions, can
be handled since they can be decomposed into monomo-
lecular and bimolecular reactions. In addition, an event-
driven algorithm of this type could be set up for, e.g.,
interacting particles [with U�r� � 0 for jrj>�]—�tmax

is then determined by the range of U�r�—and/or those
moving by other mechanisms than diffusion such as active
transport. If necessary, the required Green’s functions and
propensity functions could be obtained numerically.

Application.—We demonstrate GFRD using the follow-
ing model of gene expression:

A� B ! 
ka

kd
C; (9)

C ���!
kprod

P� A� B; (10)

P ���!
kdec

[ (11)

In Eqs. (9)–(11), A represents a promoter site on the DNA
and B a RNA polymerase (RNAP) molecule that moves
by free diffusion and that can bind with a forward rate ka
to the promoter site to form the RNAP-DNA complex C.
This complex can dissociate with a rate constant kd.
Alternatively, it can produce a protein P at a production
rate kprod. Proteins degrade with decay rate kdec.

In the simulations, we fix the promoter site A in the
center of a spherical container of volume V � 1 �m3,
which is comparable to that of the Escherichia coli cell.
The concentration of RNAP is 30 nM [13] and its diffusion
constant is D � 1 �m2 s�1 [14]. At contact, the RNAP
associates with the promoter site at a rate determined by
the Maxwell-Boltzmann velocity distribution, leading to
ka � 3� 109 M�1 s�1 [15]. The dissociation rate is kd �
21:5 s�1, corresponding to the equilibrium constant K �
12810
ka=kd reported in [13]. The diameters of the promoter site
and the RNAP molecules are � � 5 nm.

In Fig. 2 we show the average number of proteins NP as
a function of kprod, keeping kdecay fixed at 0:04 s�1. As the
concentration of RNAP is low and spatial correlations are
negligible, the GFRD results for NP follow the mean-field
prediction

NP � K1K2
NB

V � K1NB
; (12)

where K1 � ka=�kd � kprod� and K2 � kprod=kdec.
However, in contrast to the mean-field analysis, GFRD
also allows us to quantify the effect of the spatial fluctua-
tions of the RNAP molecules on the noise in gene
expression.

To assess the importance of spatial fluctuations we
compare the GFRD results to those obtained using the
zero-dimensional chemical master equation, which does
take into account the stochastic character of chemical
reactions, but, in contrast to GFRD, assumes that at each
instant the particles are uniformly distributed in space [4].
The noise  P in the protein concentration, defined as the
standard variation divided by the mean, can be obtained
analytically from the master equation [6]:

 2
P �

1

NP
�

kprodkaNB
kprodkaNB � NP�kaNB � kd � kprod�

2
: (13)

The second term in Eq. (13) goes through a minimum at
kprod � kaNB � kd and vanishes for both small and large
kprod. In these regimes, the master equation predicts that
gene expression reduces to a linear birth-and-death pro-
cess. In Fig. 3, we compare this prediction to that of GFRD.
For small kprod both approaches yield identical results. In
this regime, protein synthesis is the rate-limiting step. On
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FIG. 3. The noise in protein level  P as a function of synthesis
rate kprod for the reaction scheme shown in Eqs. (9)–(11). To
elucidate the effect of spatial fluctuations, we fix the mean
number of proteins at NP � 1000 by changing the protein
degradation rate kdecay.
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the time scale of gene expression the RNAP molecules
have sufficient time to become well mixed and gene ex-
pression, indeed, reduces to a linear birth-and-death pro-
cess. For kprod * 1 s�1, however, the noise of the spatially
resolved model is larger than that of the ‘‘well-stirred
reactor’’ model and grows with increasing kprod. The larger
noise is due to the broad distribution of arrival times of
RNAP molecules at the promoter site, which is much
broader than the corresponding Poisson distribution for
the system without spatial fluctuations. These calculations
show that spatial fluctuations could be an important source
of noise in gene expression.
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FIG. 4. The distribution of propagation times �t in GFRD for
a system consisting of a single particle A and NB particles B that
can react according to the scheme in Eq. (9). In brute-force
Brownian dynamics, the time step is �t � 1� 10�10 s.
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Outlook.—In biochemical networks, the reactant con-
centrations are often very low, ranging from nMs for gene
networks to �Ms for signal transduction pathways.
Figure 4 suggests that with GFRD it should be possible
to reach time steps of at least 10�6–10�4 s for such net-
works. In contrast, with conventional Brownian dynamics
[16] we typically cannot use time steps larger than
10�10–10�9 s [�10�5–10�4��2=D]. Hence, even though
in GFRD the required CPU time to execute one step is
about a factor of 10 larger than in Brownian dynamics,
the overall computational efficiency of GFRD is 2 to
5 orders of magnitude higher than that of Brownian
Dynamics under biologically relevant conditions. GFRD
thus brings particle-based simulations of biochemical net-
works on biological time scales of seconds to hours within
reach.
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